Colégio FAAT Ensino Fundamental e Médio

Lista de exercícios de Matemática - 1º Bimestre				
Nome:			%:	
Série:	$2^aA/B$	Prof.	/ /17	

Matrizes e Determinantes – Conceito, operações, matriz inversa, determinantes, propriedades. Sistemas Lineares – Equação, sistema, regra de Cramer, escalonamento e discussão.

- 1. Determine a transposta da matriz $A = (a_{ij})_{2\times 3}$ com $a_{ij} = 2i + 3j$
- 2. Se uma matriz quadrada A é tal que $A^t = -A$, ela é chamada matriz antissimétrica. Sabe-se que M é

antissimétrica e:
$$M = \begin{bmatrix} 4+a & a_{12} & a_{13} \\ a & b+2 & a_{23} \\ b & c & 2c-8 \end{bmatrix}$$

Os termos a_{12} , a_{13} e a_{23} de M, valem respectivamente:

A)
$$-4$$
, $-2 e 4$

B)
$$4, 2e-4$$

C)
$$4, -2e-4$$

D)
$$2, -4 e 2$$

3. (MACKENZIE) – O traço de uma matriz quadrada é a soma dos elementos de sua diagonal principal.

O traço da matriz $A = (a_{ij})_{3\times 3}$, tal que $a_{ij} = i^j$ é?

- 4. A soma das alternativas corretas abaixo é:
- (01) Se a matriz A é do tipo 5 x 6, então a matriz A^t é do tipo 6 x 4.
- (02) Matriz identidade é uma matriz quadrada.
- (04) Se duas matrizes são de mesma ordem, então elas são iguais.
- (08) Para que uma matriz A seja igual à sua transposta é suficiente que A seja quadrada.
- (16) Se uma matriz A é nula, então $A = A^{t}$
- (32) Sendo A uma matriz, então $(A^t)^t = A$

E) 34

- 5. Seja a matriz $A = (a_{ij})_{2x2}$ com $a_{ij} = (2i + j)^2$ e $B = (b_{ij})_{2x2}$ com $b_{ij} = 2a_{ij}$. Calcule A B.
- 6. Sejam as matrizes $A = \left(a_{ij}\right)_{6\times 3}$, em que $a_{ij} = i+j$, e $B = \left(b_{ij}\right)_{3\times 4}$, em que $b_{ij} = 3i-2j$. Sendo $C = \left(c_{ij}\right)_{6\times 4}$ a matriz produto A. B, determine o elemento c_{52} .
- 7. Determine, se existir, a matriz inversa de $\begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$.
- 8. Calcule o valor de $y = \begin{vmatrix} 11 & 7 \\ 4 & 2 \end{vmatrix} \begin{vmatrix} 3 & -7 & 2 \\ 4 & 1 & -1 \\ -2 & 2 & -3 \end{vmatrix}$

9. Resolva, em
$$\Re$$
, a equação $\begin{vmatrix} x & 3 \\ x+1 & x-1 \end{vmatrix} = 2$.

10. Resolva, em
$$\Re$$
, a equação
$$\begin{vmatrix} 1 & 2 & x \\ -1 & x & x+1 \\ 3 & 2 & x \end{vmatrix} = 6.$$

GABARITO.

$$1. \begin{bmatrix} 5 & 8 & 11 \\ 7 & 10 & 13 \end{bmatrix}$$

6.
$$c_{52} = 48$$

$$7. \begin{bmatrix} -\frac{2}{5} & \frac{1}{5} \\ \frac{3}{10} & \frac{1}{10} \end{bmatrix}$$

8.
$$y = 75$$

9.
$$S = \{-1, 5\}$$

$$5. \begin{bmatrix} -9 & -16 \\ -25 & -36 \end{bmatrix}$$

10.
$$S = \{1\}$$